o Everything so far has looked at 2nd order properties of a point
pattern: pairs of points

@ Equivalent to variances and covariances for quantitative data
@ What about 1st order properties, equivalent to mean

o That is the intensity of the point process, A

#events in area dA centered at s
A(s) = lim
dA—0 dA

@ Homogeneous Poisson process (CSR):

o Plevent at s] independent of presence/absence of other events
o \(s) constant

@ Inhomogeneous Poisson process:
o \(s) not constant

Estimating intensity

@ Goal: estimate A(s) at a set of s locations (e.g. a grid)?
@ use kernel smoothing, as we did to estimate g(x)
@ bandwidth of the kernel controls smoothness of the map

o large bandwidth = smoother map
o small bandwidth = rougher (bumpier) map

o illustrate with 0 = 1.5, 0 = 4.5, and o = 15 plots

@ Also have to deal with edge effects
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What looks good?

Simple data-based rules: Scott’s rule, 25% percentile of interpoint

distances
Cross-validation, concept:

e omit a point, estimate \(s) there, want A(s) to be large

o location without a point, want A(s) to be small

Two versions of cross-validation, both a-priori reasonable

o Minimize mean-square error (Diggle-Berman criterion)
o Maximize data log-likelihood

choose o that does this the best

My experience: Diggle-Berman undersmooths
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Cypress: Diggle, likelihood
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as a function of covariates

@ imagine have X(s) at every possible location s

@ examples of potential X(s):

geographic coordinates (x,y)

distance to field edge or hazardous waste site

elevation from DEM

areal data

@ A(s) >0, so a plausible model is A(s) = exp(X3)
o e.g. A(s) = exp(Bo + Prelev(s))
o or log A(s) = By + Brelev(s)

o kriged surface based on geostat data
o but this is estimated and is not the “true” X(s)
o creates complicated issues (error in covariates problem)
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Modeling A(s) as a function of covariates

@ Data are locations of events

o anticipate A(s) larger at those locations than elsewhere
@ To get started, imagine 10 1x1 quadrats:
observe an event in 2 of them and not in 8 of them

o Use maximum likelihood to estimate A(s;) for each quadrat
o Model Y; ~ Poiss (A(s;))

e M ()"

FOY I ME) = S

log L(A(si) | Yi) = —A(si) + ¥: log (A(s1)) — log ;!
event quadrats (Y; = 1): log L = —X(s;) + log (A(s;)) — 0

o non-event quadrats (Y; =0): log L = —\(s;)) +0—0

o So, log L =3, cnes 108 (A(s7)) — DL A(si)
@ Include covariates by modeling A(s;)

e A(s;) >0, so model log \(s;) = X;3
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Modeling A(s) as a function of covariates

e 10 quadrats: log L = Y .. log (A(si)) — 2,0 A(si)
@ Now: make quadrats smaller and smaller.
e Still 2 event locations, Many “all” locations
o Event locations still a sum (event is a point)
o All locations become an integral Y, A(s;) = [, A(u)du

@ log likelihood for an inhomogeneous Poisson process

log L = Z log A\(si) — /A Au)du

@ When X(s) depends on elevation,
A(si) = exp(Bo + 1 elev(s;)), n events

log L =Y [Bo+ Brelev(si)] — /A exp (Bo + Brelev(u)) du
i=1
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Modeling A(s) as a function of covariates
o Estimate log intensity function by finding the parameter values that

maximize the log likelihood
@ When X(s) is constant (CSR, homogeneous Poisson process):

n
logl = Zlog)\f/Adu
i=1 A

= nlog\ — \||A]
d loglL n
— = ——||All=
B = 2-jal=0
N n
A= —
1Al

@ “obvious” estimator of A for HPP, n/||A||, is an ML estimator
o Maximizing log A(s) = o + B1elev(s) requires numeric maximization,
no analytical solution
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Modeling A(s) as a function of covariates

o Is this useful?

o Yes - likelihood is the most common estimator / test method, when
you move away from normal distributions

o Many of the “usual” methods are ML or refinements of ML

o Discovering that “obvious” estimator of A for HPP, n/||A||, is an ML
estimator tells you a lot:

o All the general properties of ML estimators apply:

o Estimates are consistent (get closer to true values as sample size
increases)

Asymptotic normal (have normal sampling distributions for suitably
large sample sizes)

Variance from Fisher or observed information (so can easily compute
Var [?1

log L is the foundation for model selection statistics: AIC, AlCc, BIC
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Modeling A(s) as a function of covariates

o Is this useful?

@ Notice the practical problem: Need a lot of covariate information,
o both:
o Covariate values (e.g., elevation) at the event locations
o Very commonly have X(s) at event locations
o AND covariate values everywhere else in the study area

@ No problem when X is a function of coordinates (e.g., trend surface)

o Otherwise looks intractable: X(s) at every s?
o Actually only need to estimate / approximate
Jaexp (Bo + B1X(u)) du
o Often approximate by values at a grid:
5", lgridcel exp (B + 51X (u)
o Or by values at a simple random sample of locations:

(A3 sampre [€xP (Bo + B1X ()] / Nsample

(@© Philip M. Dixon (lowa State Univ.) Spatial Data Analysis - Part 6b Spring 2020 15 /44

An aside: MAXENT modeling of species distributions

o MAXENT is a very popular algorithm / software program for
modeling species distributions
o Given GIS images with elevation, precipitation, ....
e and location records, where a species has been found
o predict P[species occurs at a new location | covariates]

@ Often called niche or species distribution modeling

@ Phillips et al., 2006, Ecol. Model. 190:231-259
@ Developed from maximum entropy principles (machine learning
technique)

@ Very popular because does not require explicit samples of absences
@ Data collection for usual logistic regression:

o Random sample of locations
o Visit an observe whether species present or absent
o Simple statistical model, practically impossible
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An aside: MAXENT modeling of species distributions

@ Wharton and Shepherd (2010, Ann. Appl. Statistics 4:1383-1402)
showed that the quantity maximized by MAXENT is the IPP log
likelihood

o Provided immediate answers to difficult questions about MAXENT,
such as role of “pseudo-absences”
@ However, appropriate use of MAXENT demands specific sort of data
o random sample of presences
o good estimate of background prevalence
o Critical review of assumptions:
o Royle, J.A. et al. 2012, Methods in Ecology and Evolution,
3(3):545-554
o And data are often not “the right sort”

o Review of many applications of MAXENT
Yackulik, C. et al. 2013, MEE 4(3):246-243.
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Modeling spatial patterns

o Historically (through 2000 or later)
o Classify pattern as clustered, random, segregated
o Current best practice, more insightful:
o model the spatial pattern,
o learn more about the characteristics of the clusters or the regularity
e not just clustering: yes/no?, regular: yes/no?
@ Many different models for spatial point patterns
o | will only talk about two to illustrate what can be done.
o Chapter 6 of Diggle's spatial point pattern book describes many more.
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Estimating seed dispersal distance

@ How far are seeds moved away from mom?
o Plant produces seeds
o In most plants, those seeds are dispersed away from mom.
o Higher survival/growth if not really close to mom.
o How far do they move?

o very very difficult to measure directly

o If mom'’s are widely spaced, and you know the location of mom, can
look at locations of seedlings to estimate directly (picture on next
slide)
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The problem gets harder

@ In previous plot, seedling distribution “looks” like short-distance
dispersal.
reasonable to assume points around a mom all came from that mom
@ What about next plot?
@ Which seedlings belong to each mom?
e not clear
o genetic markers sometimes help, but expensive
@ And what if the plant is an annual, so when you can see the seedlings,
you don’t know where mom was? (2nd plot)
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Neyman-Scott process for clustered events

@ a very general model

mothers are CSR with an intensity k

daughters have a specified distribution of distance from mom
often bivariate normal (0, 62) = Thomas process

another common choice:

uniform w/i disk of radius r = Matern cluster process

with a Poisson # of daughters per mom, with mean p

only observe daughter locations, not mom

parameters are k, o2, and yu, or k, r, and

@ Pictures and K functions on next slide
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o key parameter in seed dispersal question is o2 (or r)

@ For many N-S-type processes, can calculate (or look up) theoretical
K(x|k,02?, and p)

o So, estimate k, 02, and y by finding the theoretical K(x) that is
closest to the K(x) computed from the events

@ How to determine “closest”?

Commonly use least-squares estimation: “minimum contrast”
estimation

. 2
i.e. minimize X [K(x) — K(x| k,azﬁu)}
problem here is that Var K(x) is not constant

so LS would “pay more attention” to distances x with large variances
because LS assumes all distances have the same variance
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o Dealing with unequal Var R(x): Diggle and Gratton suggest

(= [l e = ke o )

@ This is like the Cressie-Hawkins variogram estimator,
o Using 1/4 power to control the variance
e Don't need the C-H denominator because comparing two functions.
o Calculating theoretical K(x) usually requires integration
o Q: What if you can't do that integration analytically?
@ A: calculate a Monte-Carlo approximation to that integral
o simulate process | k, 02, u
o calculate K(x)

o repeat above 2 steps many times (1000?) and average to estimate
K(x | k,o?. 1)
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Cypress trees in Savannah River Swamp
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Modeling clustering of cypress trees

@ Matern process: N-S process in which daughters are randomly
distributed within a disk with radius R
@ Theoretical K(x) for a Matern process
h(x/2R
K(x) = mx° + L{( )

where h() is a known function, details not important
o fitting this model to the cypress locations gives:

o k =0.0024
o R=1201
o i =3.70

@ Interpretation:

o a total of 24 = 0.0024*area = 0.0024*50*200 clusters
o each with radius 12m and containing 3.7 trees
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Modeling clustering of cypress trees
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Modeling clustering of cypress trees

@ Many different N-S processes, differing in the distribution of
daughters around mom

o Thomas process: daughters (what you see) ~ N(0,0?) around unseen

mom

o Estimates are similar:
o k =0.0027
e 52 =36.09
o fi =3.40

@ Interpretation:

o a total of 27 = 0.0027*area = 0.0027*50*200 clusters
o clusters containing 3.4 trees on average
o have sd of 6.1m, so 95% of trees within 2.45s = 15.0m.
o where does 2.45 come from?

o cluster is isotropic, so distance? /o ~ Chi(2)

e 0.95 quantile of Chi(2) = 5.99.
o V5.99 =245
]

Approximate calculation, ignores uncertainty in s2
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Modeling clustering of cypress trees
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A process with inhibitio

o Point patterns that tend to be regular

@ there are many of these - | will use Strauss process as an illustration
@ consider sequentially simulating points

@ remember def'n of a Poisson process: Plevent in dA] does not depend
on presence / absence of any other events

to get inhibition, a nearby point reduces Plevent in dA]
Strauss process with interaction radius of r

generate the tentative location of an event using a Poisson process,
with intensity A

draw a circle of radius r around the tentative location

count number of already existing events in that circle

if n =0, keep the event (intensity is \)

if n > 0, keep the event with probability 7" (intensity | other events is

n

"
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Interpr

S process

@ Characteristics of the process depend on r and especially
o v = 0: hard-core process. No event allowed w/i distance r of another
e 0 <~ < 1: soft-core process. Events w/i distance r are less likely.
e v = 1: no inhibition, Poisson process
@ Three parameters in this model:
e r: radius of interaction
e 7y strength of inhibitation
o [ related to overall intensity (# of events)
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Estimating parameters in an inhibition model

o Can write down an approximation to K(x)

o use as we did for a cluster process
@ Or use likelihood:
o Likelihood for CSR or inhomogeneous Poisson process is easy to write

down

@ InL is a sum because points are independent

o Hard to write down log L for processes with inhibition

o Need joint distribution of all events, not sum of independent pieces

o And even harder to maximize
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Estimating param. of a process with inhibition

@ Two issues:

o log Likelihood is not a sum of independent pieces
o hard to find maximum for some parameters

@ Solutions (as of now, not the final word):
@ 1) pseudolikelihood
o Approximate the joint distribution:

(Y1, Yo, oo, Yo | 0) = F(Y1]Y_1,0)f(Ya|Y_2,0) - £(Ys|Y_1,0)

where Y_; means without event Y;
o resulting InL is:

log L(0] Y1,Y2,---,Ya) =X]_;logL(6,Yi ] Y_i)

o leads to good estimates but Var ¢ badly estimated
e so bad tests, confidence intervals

) Philip M. Dixe (lowa State Univ.) Spatial Data Analysis - Pa Spring 2020

Estimating param. of a process with inhibition

@ 2) profiling over r
e no analytical equations for MLE's of a Strauss process
have to numerically maximize
turns out to be easy to maximize InL for v and 3, not for r
r is called an irregular parameter. very hard to find a maximum, even
numerically
Solution: profile likelihood
pick a value of r, find 4 and B that maximize log L(7, B | Y,r), ie.
fixed value of r
repeat for various values of r
find the “best” value of r (at least approximately).
o that is 7, use corresponding 4 and f3.
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Combining pattern and trend

@ Example point pattern:

00 02 04 06 08 1.0

00 02 04 06 08 10
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Combining pattern and trend

@ Two possible interpretations
o Events are independent, intensity varies
o Intensity is constant, events are clustered

o Remember geostats: trend + spatial correlation
e No unique decomposition based on the data alone
@ Same thing with a point pattern
@ Can construct two processes with exactly the same K(x) function

e One is varying intensity, independent events
e One is constant intensity, clustered events
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Combining patterns and trend

@ Usual solution: relies on covariates

o Trend is something you can predict from covariates
o Pattern is what is left over

o Examining pattern when intensity not constant
o Adjust estimator
o “Inhomogeneous” K(x):

I(d,, < x)
X
i uAn Z wiA(s)A(5)

o Note: when A(s) constant = n/||A|| get usual K(x)
HAH ) ’(du < X)
i#j

o Adjust expectation
o Fit trend model X(s),
o simulate inhomogeneous Poisson process with that A(s) surface
o Compute K(x), repeat
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Combining patterns and trend

@ Modeling patterns and trend simultaneously
o Inhibition / segregation
o Pseudolikelihood: Easy to include trend and inhibitation
o Clustering

o Not settled: current usual practice is to estimate A(s) as function of
covariates

@ Use the inhomogenous K(x) estimator with that A(s)

@ using minimum contrast to fit the clustering process
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