
Intensity

Everything so far has looked at 2nd order properties of a point
pattern: pairs of points

Equivalent to variances and covariances for quantitative data

What about 1st order properties, equivalent to mean

That is the intensity of the point process, λ

λ(s) = lim
dA→0

#events in area dA centered at s

dA

Homogeneous Poisson process (CSR):

P[event at s] independent of presence/absence of other events
λ(s) constant

Inhomogeneous Poisson process:

λ(s) not constant
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Estimating intensity

Goal: estimate λ(s) at a set of s locations (e.g. a grid)?

use kernel smoothing, as we did to estimate ĝ(x)

bandwidth of the kernel controls smoothness of the map

large bandwidth ⇒ smoother map
small bandwidth ⇒ rougher (bumpier) map

illustrate with σ = 1.5, σ = 4.5, and σ = 15 plots

Also have to deal with edge effects
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BW: 1.5m
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BW: 4.5m
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BW: 15m
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How to choose σ?

What looks good?

Simple data-based rules: Scott’s rule, 25% percentile of interpoint
distances

Cross-validation, concept:

omit a point, estimate λ(s) there, want λ(s) to be large
location without a point, want λ(s) to be small

Two versions of cross-validation, both a-priori reasonable

Minimize mean-square error (Diggle-Berman criterion)
Maximize data log-likelihood

choose σ that does this the best

My experience: Diggle-Berman undersmooths
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Diggle-Berman
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Likelihood

5 10 15 20 25

−
60

0
−

56
0

−
52

0

σ

cv
(σ

)

c© Philip M. Dixon (Iowa State Univ.) Spatial Data Analysis - Part 6b Spring 2020 8 / 44



Cypress: Diggle, likelihood
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Modeling λ(s) as a function of covariates

imagine have X (s) at every possible location s

examples of potential X (s):

geographic coordinates (x,y)
distance to field edge or hazardous waste site
elevation from DEM
areal data

λ(s) ≥ 0, so a plausible model is λ(s) = exp(Xβ)

e.g. λ(s) = exp(β0 + β1elev(s))
or log λ(s) = β0 + β1elev(s)

kriged surface based on geostat data

but this is estimated and is not the “true” X (s)
creates complicated issues (error in covariates problem)
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Modeling λ(s) as a function of covariates

Data are locations of events

anticipate λ(s) larger at those locations than elsewhere

To get started, imagine 10 1x1 quadrats:

observe an event in 2 of them and not in 8 of them
Use maximum likelihood to estimate λ(si ) for each quadrat
Model Yi ∼ Poiss (λ(si ))

f (Yi | λ(si )) =
e−λ(si )λ(si )

Yi

Yi !

log L (λ(si ) | Yi ) = −λ(si ) + Yi log (λ(si ))− logYi !

event quadrats (Yi = 1): log L = −λ(si ) + log (λ(si ))− 0
non-event quadrats (Yi = 0): log L = −λ(si ) + 0− 0
So, log L =

∑
events log (λ(si ))−

∑
all λ(si )

Include covariates by modeling λ(si )

λ(si ) ≥ 0, so model log λ(si ) = X iβ
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Modeling λ(s) as a function of covariates

10 quadrats: log L =
∑

events log (λ(si ))−
∑

all λ(si )

Now: make quadrats smaller and smaller.

Still 2 event locations, Many “all” locations
Event locations still a sum (event is a point)
All locations become an integral

∑
all λ(si )⇒

∫
A
λ(u)du

log likelihood for an inhomogeneous Poisson process

log L =
n∑

i=1

log λ(si )−
∫
A
λ(u)du

When λ(s) depends on elevation,
λ(si ) = exp(β0 + β1 elev(si )), n events

log L =
n∑

i=1

[β0 + β1elev(si )]−
∫
A

exp (β0 + β1elev(u)) du
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Modeling λ(s) as a function of covariates

Estimate log intensity function by finding the parameter values that
maximize the log likelihood

When λ(s) is constant (CSR, homogeneous Poisson process):

log L =
n∑

i=1

log λ−
∫
A
λdu

= n log λ− λ‖A‖
d log L

d λ
=

n

λ
− ‖A‖ = 0

λ̂ =
n

‖A‖

“obvious” estimator of λ for HPP, n/‖A‖, is an ML estimator

Maximizing log λ(s) = β0 + β1elev(s) requires numeric maximization,
no analytical solution
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Modeling λ(s) as a function of covariates

Is this useful?

Yes - likelihood is the most common estimator / test method, when
you move away from normal distributions
Many of the “usual” methods are ML or refinements of ML
Discovering that “obvious” estimator of λ for HPP, n/‖A‖, is an ML
estimator tells you a lot:
All the general properties of ML estimators apply:

Estimates are consistent (get closer to true values as sample size
increases)
Asymptotic normal (have normal sampling distributions for suitably
large sample sizes)
Variance from Fisher or observed information (so can easily compute
Var β̂1
log L is the foundation for model selection statistics: AIC, AICc, BIC
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Modeling λ(s) as a function of covariates

Is this useful?

Notice the practical problem: Need a lot of covariate information,

both:
Covariate values (e.g., elevation) at the event locations

Very commonly have X (s) at event locations

AND covariate values everywhere else in the study area

No problem when λ is a function of coordinates (e.g., trend surface)

Otherwise looks intractable: X (s) at every s?

Actually only need to estimate / approximate∫
A exp (β0 + β1X (u)) du

Often approximate by values at a grid:∑
grid ‖gridcell‖exp (β0 + β1X (u))

Or by values at a simple random sample of locations:
‖A‖

∑
sample [exp (β0 + β1X (u))] /nsample
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An aside: MAXENT modeling of species distributions

MAXENT is a very popular algorithm / software program for
modeling species distributions

Given GIS images with elevation, precipitation, ....
and location records, where a species has been found
predict P[species occurs at a new location | covariates]

Often called niche or species distribution modeling

Phillips et al., 2006, Ecol. Model. 190:231-259

Developed from maximum entropy principles (machine learning
technique)

Very popular because does not require explicit samples of absences

Data collection for usual logistic regression:

Random sample of locations
Visit an observe whether species present or absent
Simple statistical model, practically impossible
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An aside: MAXENT modeling of species distributions

Wharton and Shepherd (2010, Ann. Appl. Statistics 4:1383-1402)
showed that the quantity maximized by MAXENT is the IPP log
likelihood

Provided immediate answers to difficult questions about MAXENT,
such as role of “pseudo-absences”

However, appropriate use of MAXENT demands specific sort of data

random sample of presences
good estimate of background prevalence

Critical review of assumptions:

Royle, J.A. et al. 2012, Methods in Ecology and Evolution,
3(3):545-554

And data are often not “the right sort”

Review of many applications of MAXENT
Yackulik, C. et al. 2013, MEE 4(3):246-243.
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Modeling spatial patterns

Historically (through 2000 or later)

Classify pattern as clustered, random, segregated

Current best practice, more insightful:

model the spatial pattern,
learn more about the characteristics of the clusters or the regularity
not just clustering: yes/no?, regular: yes/no?

Many different models for spatial point patterns

I will only talk about two to illustrate what can be done.
Chapter 6 of Diggle’s spatial point pattern book describes many more.
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Estimating seed dispersal distance

How far are seeds moved away from mom?

Plant produces seeds
In most plants, those seeds are dispersed away from mom.
Higher survival/growth if not really close to mom.
How far do they move?

very very difficult to measure directly

If mom’s are widely spaced, and you know the location of mom, can
look at locations of seedlings to estimate directly (picture on next
slide)
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The problem gets harder

In previous plot, seedling distribution “looks” like short-distance
dispersal.
reasonable to assume points around a mom all came from that mom

What about next plot?

Which seedlings belong to each mom?

not clear
genetic markers sometimes help, but expensive

And what if the plant is an annual, so when you can see the seedlings,
you don’t know where mom was? (2nd plot)
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Neyman-Scott process for clustered events

a very general model

mothers are CSR with an intensity k
daughters have a specified distribution of distance from mom
often bivariate normal (0, σ2) = Thomas process
another common choice:
uniform w/i disk of radius r = Matern cluster process
with a Poisson # of daughters per mom, with mean µ
only observe daughter locations, not mom
parameters are k , σ2, and µ, or k , r , and µ

Pictures and K functions on next slide
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Matern Clust process
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Estimation

key parameter in seed dispersal question is σ2 (or r)

For many N-S-type processes, can calculate (or look up) theoretical
K (x |k, σ2, and µ)

So, estimate k , σ2, and µ by finding the theoretical K (x) that is
closest to the K̂ (x) computed from the events

How to determine “closest”?

Commonly use least-squares estimation: “minimum contrast”
estimation

i.e. minimize Σ
[
K̂ (x)− K (x | k , σ2, µ)

]2
problem here is that Var K̂ (x) is not constant
so LS would “pay more attention” to distances x with large variances
because LS assumes all distances have the same variance
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Estimation

Dealing with unequal Var K̂ (x): Diggle and Gratton suggest(
Σ
[
| K̂ (x)1/4 − K (x | k, σ2, µ)1/4 |

]2)
This is like the Cressie-Hawkins variogram estimator,

Using 1/4 power to control the variance
Don’t need the C-H denominator because comparing two functions.

Calculating theoretical K (x) usually requires integration

Q: What if you can’t do that integration analytically?

A: calculate a Monte-Carlo approximation to that integral

simulate process | k, σ2, µ
calculate K̂ (x)
repeat above 2 steps many times (1000?) and average to estimate
K (x | k, σ2, µ)
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Cypress trees in Savannah River Swamp
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Modeling clustering of cypress trees

Matern process: N-S process in which daughters are randomly
distributed within a disk with radius R

Theoretical K (x) for a Matern process

K (x) = πx2 +
h(x/2R)

k
,

where h() is a known function, details not important

fitting this model to the cypress locations gives:

k̂ = 0.0024
R̂ = 12.01
µ̂ = 3.70

Interpretation:

a total of 24 = 0.0024*area = 0.0024*50*200 clusters
each with radius 12m and containing 3.7 trees
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Modeling clustering of cypress trees
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Modeling clustering of cypress trees

Many different N-S processes, differing in the distribution of
daughters around mom

Thomas process: daughters (what you see) ∼ N(0, σ2) around unseen
mom

Estimates are similar:
k̂ = 0.0027
σ̂2 = 36.09
µ̂ = 3.40

Interpretation:
a total of 27 = 0.0027*area = 0.0027*50*200 clusters
clusters containing 3.4 trees on average
have sd of 6.1m, so 95% of trees within 2.45s = 15.0m.
where does 2.45 come from?

cluster is isotropic, so distance2/σ2 ∼ Chi(2)
0.95 quantile of Chi(2) = 5.99.√

5.99 = 2.45
Approximate calculation, ignores uncertainty in s2
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Modeling clustering of cypress trees
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A process with inhibition

Point patterns that tend to be regular

there are many of these - I will use Strauss process as an illustration

consider sequentially simulating points

remember def’n of a Poisson process: P[event in dA] does not depend
on presence / absence of any other events

to get inhibition, a nearby point reduces P[event in dA]

Strauss process with interaction radius of r

generate the tentative location of an event using a Poisson process,
with intensity λ
draw a circle of radius r around the tentative location
count number of already existing events in that circle
if n = 0, keep the event (intensity is λ)
if n > 0, keep the event with probability γn (intensity | other events is
λγn.
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Interpreting a Strauss process

Characteristics of the process depend on r and especially γ

γ = 0: hard-core process. No event allowed w/i distance r of another
0 < γ < 1: soft-core process. Events w/i distance r are less likely.
γ = 1: no inhibition, Poisson process

Three parameters in this model:

r : radius of interaction
γ: strength of inhibitation
β: related to overall intensity (# of events)

c© Philip M. Dixon (Iowa State Univ.) Spatial Data Analysis - Part 6b Spring 2020 35 / 44

Hard Core Strauss
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Estimating parameters in an inhibition model

Can write down an approximation to K (x)

use as we did for a cluster process

Or use likelihood:

Likelihood for CSR or inhomogeneous Poisson process is easy to write
down

lnL is a sum because points are independent
Hard to write down log L for processes with inhibition

Need joint distribution of all events, not sum of independent pieces

And even harder to maximize
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Estimating param. of a process with inhibition

Two issues:

log Likelihood is not a sum of independent pieces
hard to find maximum for some parameters

Solutions (as of now, not the final word):

1) pseudolikelihood

Approximate the joint distribution:

f (Y1,Y2, · · · ,Yn | θ) ≈ f (Y1|Y−1, θ)f (Y2|Y−2, θ) · · · f (Yn|Y−n, θ)

where Y−i means without event Yi

resulting lnL is:

log L(θ | Y1,Y2, · · · ,Yn) = Σn
i=1 log L(θ,Yi | Y−i )

leads to good estimates but Var θ badly estimated
so bad tests, confidence intervals
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Estimating param. of a process with inhibition

2) profiling over r

no analytical equations for MLE’s of a Strauss process
have to numerically maximize
turns out to be easy to maximize lnL for γ and β, not for r
r is called an irregular parameter. very hard to find a maximum, even
numerically
Solution: profile likelihood
pick a value of r , find γ̂ and β̂ that maximize log L(γ, β | Y , r), i.e.
fixed value of r
repeat for various values of r
find the “best” value of r (at least approximately).
that is r̂ , use corresponding γ̂ and β̂.
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Combining pattern and trend

Example point pattern:
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Combining pattern and trend

Two possible interpretations

Events are independent, intensity varies
Intensity is constant, events are clustered

Remember geostats: trend + spatial correlation

No unique decomposition based on the data alone

Same thing with a point pattern

Can construct two processes with exactly the same K (x) function

One is varying intensity, independent events
One is constant intensity, clustered events
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Combining patterns and trend

Usual solution: relies on covariates
Trend is something you can predict from covariates
Pattern is what is left over

Examining pattern when intensity not constant
Adjust estimator

“Inhomogeneous” K(x):

K̂I (x) =
1

‖A‖
∑
i 6=j

I (dij < x)

wijλ(si )λ(sj)

Note: when λ(s) constant = n/‖A‖ get usual K̂(x)

K̂(x) =
‖A‖
n2

∑
i 6=j

I (dij < x)

wij

Adjust expectation

Fit trend model λ̂(s),
simulate inhomogeneous Poisson process with that λ(s) surface
Compute K(x), repeat
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Combining patterns and trend

Modeling patterns and trend simultaneously
Inhibition / segregation

Pseudolikelihood: Easy to include trend and inhibitation

Clustering

Not settled: current usual practice is to estimate λ(s) as function of
covariates
Use the inhomogenous K(x) estimator with that λ(s)
using minimum contrast to fit the clustering process
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