

- Everything so far has looked at 2nd order properties of a point pattern: pairs of points
- Equivalent to variances and covariances for quantitative data
- What about 1st order properties, equivalent to mean
- That is the intensity of the point process, λ

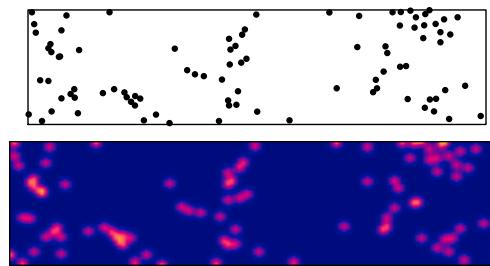
$$\lambda(s) = \lim_{dA \rightarrow 0} \frac{\text{\#events in area } dA \text{ centered at } s}{dA}$$

- Homogeneous Poisson process (CSR):
 - $P[\text{event at } s]$ independent of presence/absence of other events
 - $\lambda(s)$ constant
- Inhomogeneous Poisson process:
 - $\lambda(s)$ not constant

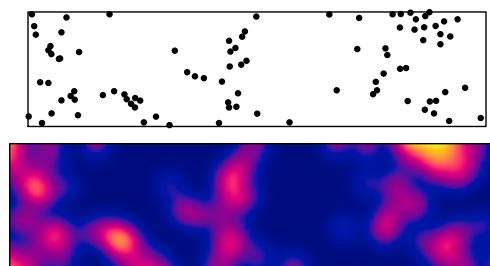
Estimating intensity

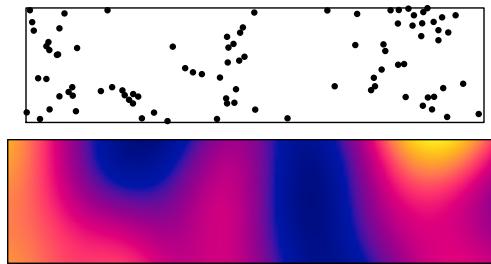
- Goal: estimate $\lambda(s)$ at a set of s locations (e.g. a grid)?
- use kernel smoothing, as we did to estimate $\hat{g}(x)$
- bandwidth of the kernel controls smoothness of the map
 - large bandwidth \Rightarrow smoother map
 - small bandwidth \Rightarrow rougher (bumpier) map
- illustrate with $\sigma = 1.5$, $\sigma = 4.5$, and $\sigma = 15$ plots
- Also have to deal with edge effects

BW: 1.5m



BW: 4.5m

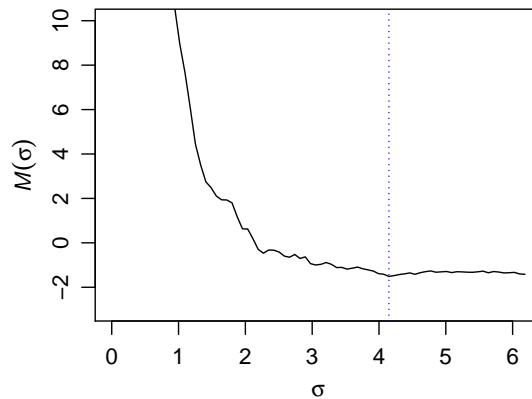




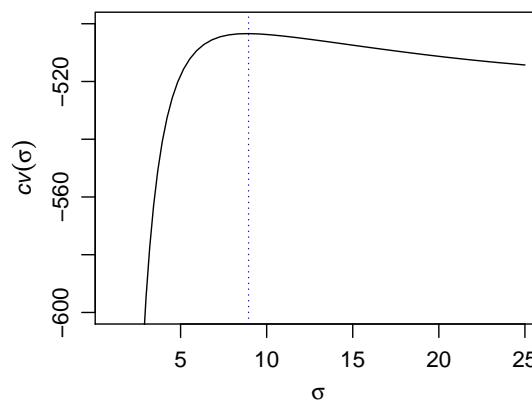
How to choose σ ?

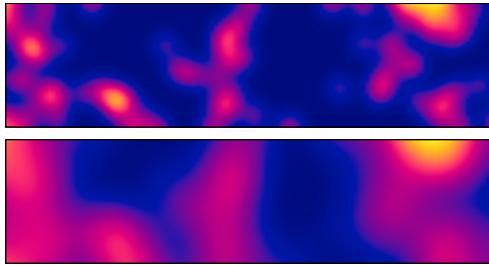
- What looks good?
- Simple data-based rules: Scott's rule, 25% percentile of interpoint distances
- Cross-validation, concept:
 - omit a point, estimate $\lambda(s)$ there, want $\lambda(s)$ to be large
 - location without a point, want $\lambda(s)$ to be small
- Two versions of cross-validation, both *a-priori* reasonable
 - Minimize mean-square error (Diggle-Berman criterion)
 - Maximize data log-likelihood
- choose σ that does this the best
- My experience: Diggle-Berman undersmooths

Diggle-Berman



Likelihood





Modeling $\lambda(s)$ as a function of covariates

- imagine have $X(s)$ at every possible location s
- examples of potential $X(s)$:
 - geographic coordinates (x,y)
 - distance to field edge or hazardous waste site
 - elevation from DEM
 - areal data
- $\lambda(s) \geq 0$, so a plausible model is $\lambda(s) = \exp(\mathbf{X}\beta)$
 - e.g. $\lambda(s) = \exp(\beta_0 + \beta_1 \text{elev}(s))$
 - or $\log \lambda(s) = \beta_0 + \beta_1 \text{elev}(s)$
- kriged surface based on geostat data
 - but this is estimated and is not the "true" $X(s)$
 - creates complicated issues (error in covariates problem)

Modeling $\lambda(s)$ as a function of covariates

- Data are locations of events
 - anticipate $\lambda(s)$ larger at those locations than elsewhere
- To get started, imagine 10 1x1 quadrats:
 - observe an event in 2 of them and not in 8 of them
 - Use maximum likelihood to estimate $\lambda(s_i)$ for each quadrat
 - Model $Y_i \sim \text{Pois}(\lambda(s_i))$

$$f(Y_i | \lambda(s_i)) = \frac{e^{-\lambda(s_i)} \lambda(s_i)^{Y_i}}{Y_i!}$$

$$\log L(\lambda(s_i) | Y_i) = -\lambda(s_i) + Y_i \log(\lambda(s_i)) - \log Y_i!$$

- event quadrats ($Y_i = 1$): $\log L = -\lambda(s_i) + \log(\lambda(s_i)) - 0$
- non-event quadrats ($Y_i = 0$): $\log L = -\lambda(s_i) + 0 - 0$
- So, $\log L = \sum_{\text{events}} \log(\lambda(s_i)) - \sum_{\text{all}} \lambda(s_i)$
- Include covariates by modeling $\lambda(s_i)$
 - $\lambda(s_i) \geq 0$, so model $\log \lambda(s_i) = \mathbf{X}_i \beta$

Modeling $\lambda(s)$ as a function of covariates

- 10 quadrats: $\log L = \sum_{\text{events}} \log(\lambda(s_i)) - \sum_{\text{all}} \lambda(s_i)$
- Now: make quadrats smaller and smaller.
 - Still 2 event locations, Many "all" locations
 - Event locations still a sum (event is a point)
 - All locations become an integral $\sum_{\text{all}} \lambda(s_i) \Rightarrow \int_A \lambda(u) du$
- log likelihood for an inhomogeneous Poisson process

$$\log L = \sum_{i=1}^n \log \lambda(s_i) - \int_A \lambda(u) du$$

- When $\lambda(s)$ depends on elevation, $\lambda(s_i) = \exp(\beta_0 + \beta_1 \text{elev}(s_i))$, n events

$$\log L = \sum_{i=1}^n [\beta_0 + \beta_1 \text{elev}(s_i)] - \int_A \exp(\beta_0 + \beta_1 \text{elev}(u)) du$$

Modeling $\lambda(s)$ as a function of covariates

- Estimate log intensity function by finding the parameter values that maximize the log likelihood
- When $\lambda(s)$ is constant (CSR, homogeneous Poisson process):

$$\begin{aligned}\log L &= \sum_{i=1}^n \log \lambda - \int_A \lambda du \\ &= n \log \lambda - \lambda \|A\| \\ \frac{d \log L}{d \lambda} &= \frac{n}{\lambda} - \|A\| = 0 \\ \hat{\lambda} &= \frac{n}{\|A\|}\end{aligned}$$

- "obvious" estimator of λ for HPP, $n/\|A\|$, is an ML estimator
- Maximizing $\log \lambda(s) = \beta_0 + \beta_1 \text{elev}(s)$ requires numeric maximization, no analytical solution

Modeling $\lambda(s)$ as a function of covariates

- Is this useful?
 - Yes - likelihood is the most common estimator / test method, when you move away from normal distributions
 - Many of the "usual" methods are ML or refinements of ML
 - Discovering that "obvious" estimator of λ for HPP, $n/\|A\|$, is an ML estimator tells you a lot:
 - All the general properties of ML estimators apply:
 - Estimates are consistent (get closer to true values as sample size increases)
 - Asymptotic normal (have normal sampling distributions for suitably large sample sizes)
 - Variance from Fisher or observed information (so can easily compute $\text{Var } \hat{\beta}_1$)
 - $\log L$ is the foundation for model selection statistics: AIC, AICc, BIC

Modeling $\lambda(s)$ as a function of covariates

- Is this useful?
- Notice the practical problem: Need a lot of covariate information,
- both:
 - Covariate values (e.g., elevation) at the event locations
 - Very commonly have $X(s)$ at event locations
 - AND covariate values everywhere else in the study area
- No problem when λ is a function of coordinates (e.g., trend surface)
- Otherwise looks intractable: $X(s)$ at every s ?
- Actually only need to estimate / approximate $\int_A \exp(\beta_0 + \beta_1 X(u)) du$
 - Often approximate by values at a grid:
 $\sum_{\text{grid}} \|\text{gridcell}\| \exp(\beta_0 + \beta_1 X(u))$
 - Or by values at a simple random sample of locations:
 $\|A\| \sum_{\text{sample}} [\exp(\beta_0 + \beta_1 X(u))] / n_{\text{sample}}$

An aside: MAXENT modeling of species distributions

- MAXENT is a very popular algorithm / software program for modeling species distributions
 - Given GIS images with elevation, precipitation,
 - and location records, where a species has been found
 - predict $P[\text{species occurs at a new location} \mid \text{covariates}]$
- Often called niche or species distribution modeling
- Phillips et al., 2006, Ecol. Model. 190:231-259
- Developed from maximum entropy principles (machine learning technique)
- Very popular because does not require explicit samples of absences
- Data collection for usual logistic regression:
 - Random sample of locations
 - Visit an observe whether species present or absent
 - Simple statistical model, practically impossible

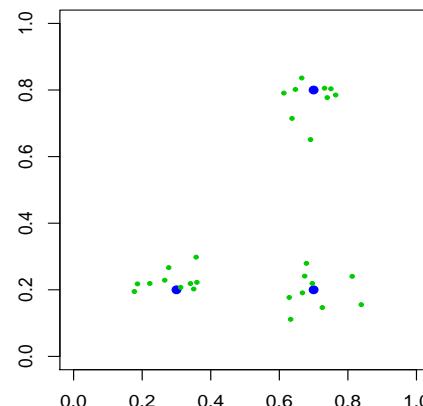
- Wharton and Shepherd (2010, Ann. Appl. Statistics 4:1383-1402) showed that the quantity maximized by MAXENT is the IPP log likelihood
 - Provided immediate answers to difficult questions about MAXENT, such as role of "pseudo-absences"
- However, appropriate use of MAXENT demands specific sort of data
 - random sample of presences
 - good estimate of background prevalence
- Critical review of assumptions:
 - Royle, J.A. et al. 2012, Methods in Ecology and Evolution, 3(3):545-554
- And data are often not "the right sort"
 - Review of many applications of MAXENT
Yackulik, C. et al. 2013, MEE 4(3):246-243.

Modeling spatial patterns

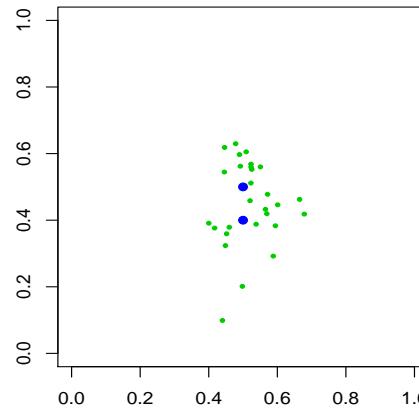
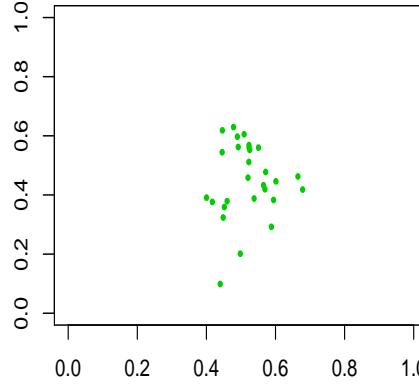
- Historically (through 2000 or later)
 - Classify pattern as clustered, random, segregated
- Current best practice, more insightful:
 - model the spatial pattern,
 - learn more about the characteristics of the clusters or the regularity
 - not just clustering: yes/no?, regular: yes/no?
- Many different models for spatial point patterns
 - I will only talk about two to illustrate what can be done.
 - Chapter 6 of Diggle's spatial point pattern book describes many more.

Estimating seed dispersal distance

- How far are seeds moved away from mom?
 - Plant produces seeds
 - In most plants, those seeds are dispersed away from mom.
 - Higher survival/growth if not really close to mom.
 - How far do they move?
- very very difficult to measure directly
- If mom's are widely spaced, and you know the location of mom, can look at locations of seedlings to estimate directly (picture on next slide)

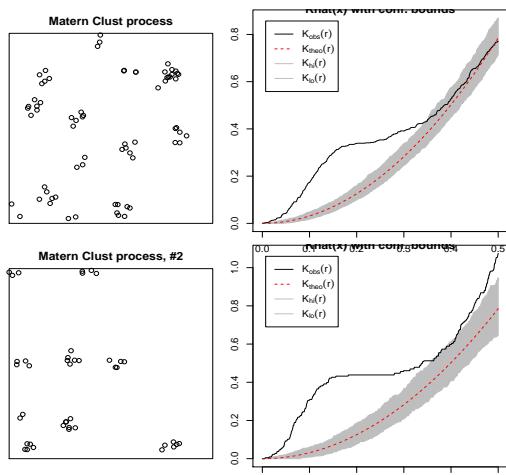


- In previous plot, seedling distribution “looks” like short-distance dispersal.
reasonable to assume points around a mom all came from that mom
- What about next plot?
- Which seedlings belong to each mom?
 - not clear
 - genetic markers sometimes help, but expensive
- And what if the plant is an annual, so when you can see the seedlings, you don’t know where mom was? (2nd plot)



Neyman-Scott process for clustered events

- a very general model
 - mothers are CSR with an intensity k
 - daughters have a specified distribution of distance from mom
often bivariate normal $(0, \sigma^2)$ = Thomas process
another common choice:
uniform w/i disk of radius r = Matern cluster process
 - with a Poisson # of daughters per mom, with mean μ
 - only observe daughter locations, not mom
 - parameters are k , σ^2 , and μ , or k , r , and μ
- Pictures and K functions on next slide



Estimation

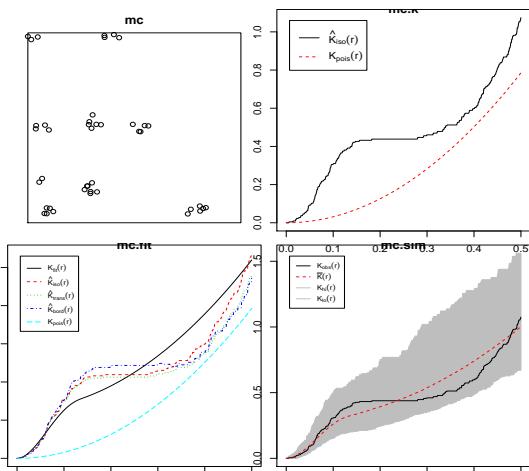
- key parameter in seed dispersal question is σ^2 (or r)
- For many N-S-type processes, can calculate (or look up) theoretical $K(x | k, \sigma^2, \mu)$
- So, estimate k , σ^2 , and μ by finding the theoretical $K(x)$ that is closest to the $\hat{K}(x)$ computed from the events
- How to determine "closest"?
 - Commonly use least-squares estimation: "minimum contrast" estimation
 - i.e. minimize $\sum [\hat{K}(x) - K(x | k, \sigma^2, \mu)]^2$
 - problem here is that $\text{Var } \hat{K}(x)$ is not constant
 - so LS would "pay more attention" to distances x with large variances because LS assumes all distances have the same variance

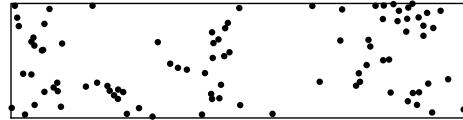
Estimation

- Dealing with unequal $\text{Var } \hat{K}(x)$: Diggle and Gratton suggest

$$\left(\sum [|\hat{K}(x)^{1/4} - K(x | k, \sigma^2, \mu)^{1/4}|]^2 \right)$$

- This is like the Cressie-Hawkins variogram estimator,
 - Using $1/4$ power to control the variance
 - Don't need the C-H denominator because comparing two functions.
- Calculating theoretical $K(x)$ usually requires integration
- Q: What if you can't do that integration analytically?
- A: calculate a Monte-Carlo approximation to that integral
 - simulate process $| k, \sigma^2, \mu$
 - calculate $\hat{K}(x)$
 - repeat above 2 steps many times (1000?) and average to estimate $K(x | k, \sigma^2, \mu)$





Modeling clustering of cypress trees

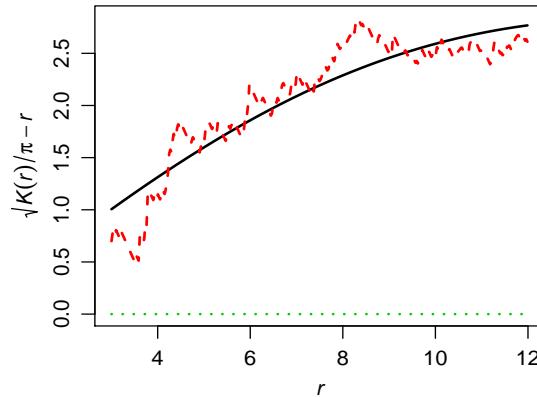
- Matern process: N-S process in which daughters are randomly distributed within a disk with radius R
- Theoretical $K(x)$ for a Matern process

$$K(x) = \pi x^2 + \frac{h(x/2R)}{k},$$

where $h()$ is a known function, details not important

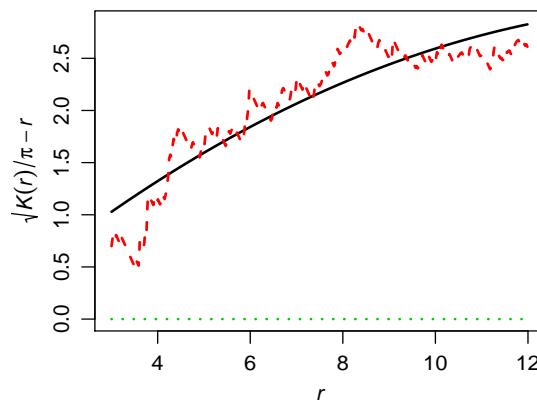
- fitting this model to the cypress locations gives:
 - $\hat{k} = 0.0024$
 - $\hat{R} = 12.01$
 - $\hat{\mu} = 3.70$
- Interpretation:
 - a total of 24 = $0.0024 \times \text{area} = 0.0024 \times 50 \times 200$ clusters
 - each with radius 12m and containing 3.7 trees

Modeling clustering of cypress trees



Modeling clustering of cypress trees

- Many different N-S processes, differing in the distribution of daughters around mom
- Thomas process: daughters (what you see) $\sim N(0, \sigma^2)$ around unseen mom
- Estimates are similar:
 - $\hat{k} = 0.0027$
 - $\hat{\sigma}^2 = 36.09$
 - $\hat{\mu} = 3.40$
- Interpretation:
 - a total of 27 = $0.0027 \times \text{area} = 0.0027 \times 50 \times 200$ clusters
 - clusters containing 3.4 trees on average
 - have sd of 6.1m, so 95% of trees within $2.45s = 15.0$ m.
 - where does 2.45 come from?
 - cluster is isotropic, so $\text{distance}^2/\sigma^2 \sim \text{Chi}(2)$
 - 0.95 quantile of $\text{Chi}(2) = 5.99$
 - $\sqrt{5.99} = 2.45$
 - Approximate calculation, ignores uncertainty in σ^2

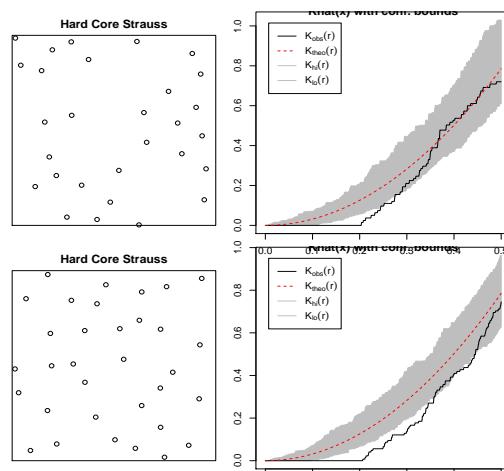


A process with inhibition

- Point patterns that tend to be regular
- there are many of these - I will use Strauss process as an illustration
- consider sequentially simulating points
- remember def'n of a Poisson process: $P[\text{event in } dA]$ does not depend on presence / absence of any other events
- to get inhibition, a nearby point **reduces** $P[\text{event in } dA]$
- Strauss process with interaction radius of r
 - generate the tentative location of an event using a Poisson process, with intensity λ
 - draw a circle of radius r around the tentative location
 - count number of already existing events in that circle
 - if $n = 0$, keep the event (intensity is λ)
 - if $n > 0$, keep the event with probability γ^n (intensity | other events is $\lambda\gamma^n$).

Interpreting a Strauss process

- Characteristics of the process depend on r and especially γ
 - $\gamma = 0$: hard-core process. No event allowed w/i distance r of another
 - $0 < \gamma < 1$: soft-core process. Events w/i distance r are less likely.
 - $\gamma = 1$: no inhibition, Poisson process
- Three parameters in this model:
 - r : radius of interaction
 - γ : strength of inhibition
 - β : related to overall intensity (# of events)



- Can write down an approximation to $K(x)$
 - use as we did for a cluster process
- Or use likelihood:
- Likelihood for CSR or inhomogeneous Poisson process is easy to write down
- $\ln L$ is a sum because points are independent
 - Hard to write down $\log L$ for processes with inhibition
 - Need joint distribution of all events, not sum of independent pieces
 - And even harder to maximize

Estimating param. of a process with inhibition

- Two issues:
 - log Likelihood is not a sum of independent pieces
 - hard to find maximum for some parameters
- Solutions (as of now, not the final word):
 - 1) pseudolikelihood
 - Approximate the joint distribution:

$$f(Y_1, Y_2, \dots, Y_n | \theta) \approx f(Y_1 | Y_{-1}, \theta) f(Y_2 | Y_{-2}, \theta) \dots f(Y_n | Y_{-n}, \theta)$$

where Y_{-i} means without event Y_i

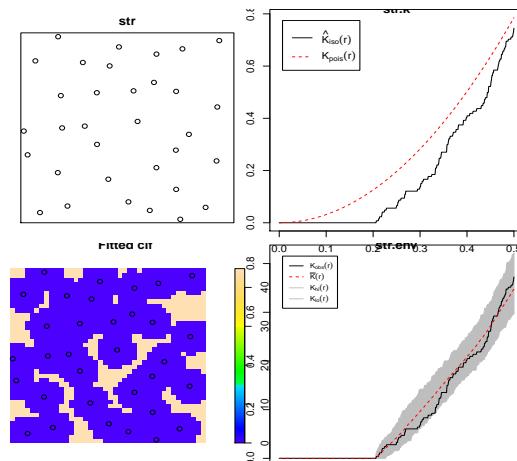
- resulting $\ln L$ is:

$$\log L(\theta | Y_1, Y_2, \dots, Y_n) = \sum_{i=1}^n \log L(\theta, Y_i | Y_{-i})$$

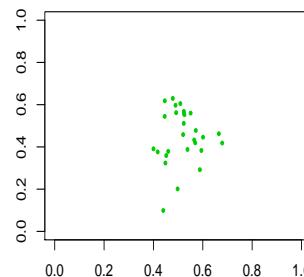
- leads to good estimates but $\text{Var } \theta$ badly estimated
- so bad tests, confidence intervals

Estimating param. of a process with inhibition

- 2) profiling over r
 - no analytical equations for MLE's of a Strauss process
 - have to numerically maximize
 - turns out to be easy to maximize $\ln L$ for γ and β , not for r
 - r is called an irregular parameter. very hard to find a maximum, even numerically
 - Solution: profile likelihood
 - pick a value of r , find $\hat{\gamma}$ and $\hat{\beta}$ that maximize $\log L(\gamma, \beta | Y, r)$, i.e. fixed value of r
 - repeat for various values of r
 - find the "best" value of r (at least approximately).
 - that is \hat{r} , use corresponding $\hat{\gamma}$ and $\hat{\beta}$.



- Example point pattern:



- Two possible interpretations
 - Events are independent, intensity varies
 - Intensity is constant, events are clustered
- Remember geostats: trend + spatial correlation
 - No unique decomposition based on the data alone
- Same thing with a point pattern
- Can construct two processes with exactly the same $K(x)$ function
 - One is varying intensity, independent events
 - One is constant intensity, clustered events

- Usual solution: relies on covariates
 - Trend is something you can predict from covariates
 - Pattern is what is left over
- Examining pattern when intensity not constant
 - Adjust estimator
 - "Inhomogeneous" $K(x)$:
 - Note: when $\lambda(s)$ constant = $n/\|A\|$ get usual $\hat{K}(x)$
 - $$\hat{K}(x) = \frac{1}{\|A\|} \sum_{i \neq j} \frac{I(d_{ij} < x)}{w_{ij} \lambda(s_i) \lambda(s_j)}$$
 - $$\hat{K}(x) = \frac{\|A\|}{n^2} \sum_{i \neq j} \frac{I(d_{ij} < x)}{w_{ij}}$$
 - Adjust expectation
 - Fit trend model $\hat{\lambda}(s)$,
 - simulate inhomogeneous Poisson process with that $\lambda(s)$ surface
 - Compute $K(x)$, repeat

- Modeling patterns and trend simultaneously
 - Inhibition / segregation
 - Pseudolikelihood: Easy to include trend and inhibition
 - Clustering
 - Not settled: current usual practice is to estimate $\lambda(s)$ as function of covariates
 - Use the inhomogenous $K(x)$ estimator with that $\lambda(s)$
 - using minimum contrast to fit the clustering process